CS 4530 Software Engineering

Module 14: Continuous Development Processes

Jonathan Bell, Adeel Bhutta, Mitch Wand
Khoury College of Computer Sciences
© 2022 released under CC BY-SA

http://creativecommons.org/licenses/by-sa/4.0/

Learning Objectives for this Lesson

By the end of this lesson, you should be able to...

* Describe how continuous integration helps to catch errors sooner In
the software lifecycle

* Describe the benefits of a culture of code review

* Describe strategies for performing quality-assurance on software as
and after it is delivered

Continuous Development

Improving quality & velocity with frequent, fast feedback loops

Develop Build Test Deploy Monitor

Code Review Style Check Integration End-to-end
Test Test

Compile Load Test

Unit Test

Prepare
Deployment

Agile Values Fast Quality Feedback Loops

Faster feedback = lower cost to fix bugs

+ Old feedback loop: do this infrequently
8 New feedback loop: do this continuously
O
Q
Q
O
Feedback loops we’ve covered:
Requirements analysis, unit testing
e
OO OQ | OS& ¢ O OO OO % (Q ’
2 S Q S 2 % %,
Co G % 4 2, N ¢ Y
/O O (@))\ /4 ’9 Qx. /
& 2 7 % 9
S, 7 ‘S Sy 270,
‘ & & 5
% %
7 C}/c.

Continuous Integration

Fast feedback on integration errors

17
O
8 Continuous Integration
& Automates Large Test Suites
©
O
Oo,) OQ& O% (OO OO
C Z Q S 2
Q G A 7 2y
Vo) 7 @) 2 Y
s ’O/)) SN <
S, % %
~ (% (o

Continuous Integration

Motivation

* Our systems involve many components, some of which might even be in
different version control repositories

* How does a developer get feedback on their (local) change?

Our changed code

l

Cache Build Build Build Send
Check friends list Newsfeed Suggestions response

Other developers’ changed code

Continuous Integration is a Software Pipeline

|| Build -l Test I

Develop Deploy Monitor

End-to-end
Integration Test KPls
Code Review Style Check 'Igest

Compile Load Test

Unit Test

Prepare
Deployment

Automate this centrally, provide a central record of results

Continuous Integration in Practice

Small scale, with a service like CircleClI, GitHub Actions or TravisCI

GitHub

*
% for updates

Commits code to

Developer

CircleCl GitHUb TravisCl
Actions

Runs build for each
commit

Example CI Pipeline

Open source project: PrestoDB

prestodb / presto

Current Branches Build History Pull Requests

X Pull Request #15372 Fix extracting logic in dynamic filtering whe

SIS ES SIS X

When integrating with filter pushdown, we extract dynami

-O- Commitcde9e65 £

;1 #15372: Fix extracting logic in dynamic filtering when integrated wi

I Branchmaster 7

™ Ke
Build jobs View config

+# 52304.1 {1 AMD64 £ Trusty </> Java
H 52304.2 1 AMD64 Trusty </> Java
H 52304.3 {1 AMD64 £ Trusty </> Java
H 52304.4 {7 AMD64 Trusty </> Java
H 52304.5 1 AMD64 £ Trusty </> Java
+H 52304.6 1 AMD64 £ Trusty </> Java

{9 #52304 failed

(¢ Ran for 17 min 40 sec
(Y Total time 10 hrs 26 min 10 sec

7] 10 hours ago

) MAVEN_CHECKS=true
) WEBUI_CHECKS=true
() TEST_SPECIFIC_MODULES=presto-tests
) TEST_SPECIFIC_MODULES=presto-tests
() TEST_SPECIFIC_MODULES=presto-tests

NS TEST_SPECIFIC_MODULES=presto-tests

More options —

(© 10 min 51 sec
(© 58sec

(© 6 min 7 sec
(© 24 min 50 sec
(© 7 min 45 sec

(Y 8 min 4 sec

https://travis-ci.com/qithub/prestodb/presto

https://travis-ci.com/github/prestodb/presto

Example CI Pipeline - TravisCI

At a glance, see history of build

prestodb / presto

Current Branches Build History Pull Requests More options —

v/ master This patch bumps Alluxio dependency to 2.3.0-: -O- #52300 passed (Y 10 hrs 49 min 31 sec

@ James Sun o 36392a2 2 2 days ago

| master Handle query level timeouts in Presto on Spark -o- #52287 errored (O 11 hrs 6 min 44 sec
Andrii Rosa o aab5ea7 7 2 days ago
| master Fix flaky test for TestTempStorageSingleStream -O- #52284 errored © 11 hrs 50 min 37 sec

</ master Check requirements under try-catch -o- #52283 passed (© 11 hrs 3 min 20 sec
Andrii Rosa o fff331f v 2 days ago

< master Update TestHiveExternalWorkersQueries to cre: -O- #52282 passed (® 10 hrs 55 min 37 sec

@ Maria Basmanova -O- 746d7b5 2 days ago

I @ Wwenlei Xie -0- 193a4cd 7 2 days ago

v/ master Introduce large dictionary mode in SliceDiction -o- #52277 passed (Y 10 hrs 43 min 30 sec https://travis-ci.com/qithub/prestodb/presto

& N T T R TR T e AN - | — O

https://travis-ci.com/github/prestodb/presto

Cl In Practice: Individual Project Autograder

test.yml (Cl workflow file)

empty]

name: 'Build and Test the Grader'
on: # rebuild any PRs and main branch changes
pull request:
push:
branches:
- maln
- 'releases/*'
jobs:
build:
runs-on: self-hosted
steps:
- uses: actions/checkout@v?2
- uses: actions/setup-node@v?2
with:
node-version: '16'
- run: |
npm 1nstall
test:
runs-on: self-hosted
strategy:
matrix:
submission: [a, b, ¢, ts-ignore, linting-error, non-green-tests,
steps:
- uses: actions/checkout@v?2
- uses: actions/setup-node@v?2
with:
node-version: '16'
- uses: ./
with:
. submission-directory: solutions/${{ matrix.submission }}

GitHub Actions Results

test.ymi
on: push

@ build

Matrix: test
@ test (a)
@ test (b)
@ test (c)
@ test (ts-ignore)
@ test (linting-error)
@ test (non-green-tests)

@ test (empty)

30s

3m 6s

3m 3s

2m 58s

5s

31s

35s

4s

Attributes of Effective Cl Processes

~ Output the full test name

* Do not allow builds to remain broken for a long All checks have passed
_ti m e O successful checks

[v Build and Test the Grader [build (push) Successfu... Details
v Check dist/ | check-dist (push) Successful in 30s Details
* Cl should run for every change [
v Build and Test the Grader /[test (reference) (push) ... Details
+:
. . . . v Build and Test the Grader [test (b) (push) Succes... Details
* Cl should be fast, providing feedback within]
. _» MmY Ruild and Tact tha Gradar | tact lfc_innn:i\clnncl:lc Nataile
minutes or hours
® . Tools: extract_features.py: correct define name for AP_RPM_ENABLED
Cl should not completely replace pre-commit B o
teSti n g AP_Mission: prevent use of uninitialised stack data -- o2

’ peterbarker committed 5 days ago X

AP_HAL_ChibiOS: disable DMA on 12C on bdshot boards to free up DMA ch... --
r}? andyp1per authored and tridge committed 6 days ago X

SITL: Fixed rounding lat/Ing issue when running JSBSim SITL -
_-:E ShivKhanna authored and tridge committed 6 days ago X

AP_HAL_ChibiOS: define skyviper short board names
.2 yuri-rage authored and tridge committed 6 days ago X

How do we apply continuous integration?
Testing the right things at the right time

* Do we integrate changes immediately, or do a pre-commit test?
* Which tests do we run when we integrate?

* How do we compose the system under test at each point?

Changed code

l
Cache Build Build Build Send
Check friends list Newsfeed Suggestions response

Other developers’ changed code

Use Scalable Cloud Resources for CI

Example: Developing a Fuzzer

* "Fuzzers” are automated testing systems that aim to automatically generate
Inputs to programs that cover code and reveal bugs

* Fuzzers are non-deterministic: to evaluate with confidence, need repeated,
long-running trials

* Evaluating fuzzers is time consuming, determining which changes impact
performance is confusing

* How to run experiments in the cloud?

CIl Pipelines Automate Performance Testing

eval-10m-5x.yml

on: push Matrix: evaluate [run-fuzzer
@ evaluate / build-matrix 55 @ evaluate / run-fuzzer (... 12m 21s @ evaluate [repro-jacoco 5m 5s @ evaluate / build-site 52s
@ evaluate [run-fuzzer... 12m 25s

@ evaluate [run-fuzzer... 12m 23s

© ovaluate | run-fuzzer (.. 12m 275 Every commit: Run 10 minute
performance test on 5
benchmarks, repeating each test
5 times (25 concurrent Jobs)

@ evaluate / run-fuzzer (... 12m 13s
@ evaluate [run-fuzzer... 12m 24s
@ evaluate / run-fuzzer (... 12m 21s
@ evaluate [run-fuzzer... 12m 23s
@ evaluate / run-fuzzer (... 12m 27s

@ evaluate / run-fuzzer (... 12m 13s

eval-24h-20x.yml

Q evaluate [run-fuzzer... 12m 24s on: workflow_dispatch Matrix: evaluate | run-fuzzer
Q evaluate | run-fuzzer ... 12m 25s @ evaluate / build-matrix 2s ® o @ evaluate [run-fuzzer (an... 1d0h @ o @ evaluate [repro-jacoco 13m 52s evaluate [build-site
@ evaluate [run-fuzzer... 12m 26s @ evaluate / run-fuzzer (bc... 1d o
@® evaluate / run-fuzzer ... 12m 26s © evaluate [run-fuzzer (cl... 1d oh OV] D@VV]@V]d:P(AV] 24 \/]O(Al/'
@ evaluate / run-fuzzer (m... 1d oh P@r'FOV‘VV\ﬂIV]OG _l—es_{— o 6
@ evaluate / run-fuzzer (rh... 1d 0h lﬂ@\/]&l/] VV]@I/"(S, r@P@ﬂl+lV]@ 6&\0\/} +@5+

@ evaluate [run-fuzzer (an... 1d 0h ZD ‘l’l\/V\@S (/\ OD GOWO(AVV@V]'l’ JOlQS)

@ -evaluate / run-fuzzer (bc... 1d 0h

@ evaluate [run-fuzzer (cl... 1d oh

[R R R -

https://github.com/neu-se/CONFETTI/actions

https://github.com/neu-se/CONFETTI/actions

CIl Pipelines Automate Performance Testing

closure

Branch Probes Over Time

30000 - ==

-1 |

20000

Branch Probes Covered

15000

Campaign Time (minutes)

Download this graph as PDF

https://github.com/neu-se/CONFETTI/actions

T
1000

1500

config

reporting-ci

eval-24h-20x.yml

on: workflow_dispatch

@ evaluate / build-matrix

2s

Matrix: evaluate [run-fuzzer

@ evaluate / run-fuzzer (an...

@ evaluate [run-fuzzer (bc...

@ evaluate / run-fuzzer (cl...

@ evaluate / run-fuzzer (m...
@ evaluate [run-fuzzer (rh...
@ evaluate [run-fuzzer (an...

@ evaluate [run-fuzzer (bc...

@ evaluate / run-fuzzer (cl...

S R R N

1d Oh

1d Oh

1d Oh

1d Oh

1d Oh

1d Oh

1d Oh

1d Oh

o @ evaluate [repro-jacoco 13m 52s evaluate / build-site

Owv Pemand: Run 24 hour
performance test on 5
benchwmarks, repeating each test
2.0 times (100 concurrent jobs)

https://github.com/neu-se/CONFETTI/actions

Continuous Integration in Practice

Large scale example: Google TAP

>50,000 unigue changes per-day, > 4 billion test cases per-day

Pre-submit optimization: run fast tests for each individual change (before
code review). If fast tests pass, allow the merge to continue

Then: run all affected tests; “build cop” monitors and acts immediately to roll-
back or fix

Build cop monitors integration test runs

Average wait time to submit a change: 11 minutes

“Software Engineering at Google: Lessons Learned from Programming Over Time,” Wright, Winters and Manshreck, 2020 (O’Reilly)

Cost to Fix a Defect Over Time

Rough estimate

- Code Review is a process of
é’ reading and commenting on code
O
D
D
A
OO OQ | O@ (O OO OO
o % @ S 2 %
Q (9 A /4 Zy Q
20 2 < . 7 A
) o) Q &/ Q.
8, %, %
/e © oA 4

Code Review should be a Formal Process

* A code review is the process in which the author of some code is asked to
explain it to their peers:

* What purpose the code has;

* How the code accomplishes this purpose;

* How the author is confident of this information,
* E.g., show results of running tests (Cl results)

* A code review often concerns a code change (“diff”)

Why should we perform code review?

* Code review increases breadth of knowledge of code:

* Other people "know” the code;

* Easier to handle someone cycling off project.
* Verbalizing decisions improves their quality:

* The process of writing an explanation encourages critical thinking.
* Code reviews improve quality of code base:

* Knowing code will be reviewed pushes developers to make code more
presentable and understandable.

Self-Review iIs no Substitute to Peer Review

Study of 300 reviews at Cisco in 2006

Effect of Author Preparation on Defect Density

g 8

~J
o

=8

(=

R
o

No
o

Average Defect Density (Defects/kLOC)
=N

—_
o

0

Without Preparation With Preparation

Even if developers pre-review their code, many defects still found in peer review

“Best Kept Secrets of Peer Code Review”, Jason Cohen, SmartBear Software, 2006

Code Reviews Have Many Benefits (Microsoft)

Ranked Motivations From Developers
Top Second Third 1N

Finding defects -
Code Improvement]
Alternative Solutions _

Knowledge Transfer

Team Awareness

]
]
Improving Dev Process -
|
]
|

Share Code Ownership

Avoid Build Breaks

Track Rationale

Team Assessment -

0 200 400 600
Responses

“Expectations, Outcomes, and Challenges of Modern Code Review”, Bacchelli & Bird, ICSE 2013

22

Code Reviews Descend from Traditional Code Inspection

* Formal process of reading through code as a group;
* Applied to all project documents;
* A 3-5 person team reads the code aloud and explains what is being done;

. EaCh p;erson has a specific role (moderator, reviewer, reader, scribe, observer,
author

* Usually a 60 minute meeting;
* |ess efficient (defects/cost) than modern review processes.
* Very watertfall.

* Traceable, measurable

Many Stakeholders can Benefit from Code Review

Reviewers might be...

An owner of the code being changed or added to
Someone to verify that the code meets standards.

Someone to ensure documentation is consistent.

Other people:
* |nterested in this code base;

* EXxperts in the code base.

Project lead
Education
Maintaining
Maintaining norms
- norms Gatek i
Readability DevelO er arereepng Other
reviewers p teams
Education o ¥
Maintaining ucation
norms ccident prevention
New team Other team
members members

“Modern Code Review: A Case Study at Google”, Sadowski et al, ICSE 2018

Code Review: How

* At Google, reviewers get access to changes, explanation
and all relevant test results: review Is asynchronous.

* Elsewhere reviews can be in person:
* More heavyweight, cannot be as common.
* Review must be professional and impersonal:
* No one is being “attacked” (or, no one should be).
* Don’t rehash design arguments (defer to author).
* All suggestions and criticisms must be addressed:

* At least in the negative.

25

Code Review: Example on Pull Request

... re-api/src/main/java/org/apache/maven/surefire/booter/CommandReader. java -E-Fﬁderesowed

case BYE_ACK:
//After SHUTDOWN no more commands can come. Hence, do NOT go back to blocking in IO
callListeners(command);
return;
default:
callListeners(command);

Tibor17 on Nov 12, 2019 Contributor ®)

The listeners are called here. But we can put IF condition:
IF BYE_ACK -> return atthe end of the default case.

Tibor17 on Nov 12, 2019 Contributor ®

Instead of calling the return we can make softer exit with CommandReader.this.state.set(
TERMINATED) .

Yes, | came to this same conclusion, change the state to TERMINATED.

jon-bell on Dec 19, 2019 Author Contributor ®)
Changed.

@ eolivelli on Dec 17, 2019 Contributor ®

Reply...

Unresolve conversation jon-bell marked this conversation as resolved.

Code Review: Sample Check-List

* Am | able to understand the code easily?

Does the code follow our style guidelines?

Is the same code duplicated more than once?

Is this file (or change) too big?

Does this code meet our non-functional requirements?
Is this code maintainable?

Does this code have unintended side-effects?

27

Code Reviews and Programmer’s Ego

Code review means someone’s looking over your work
You might have some attachment to it

Criticisms: sometimes hard not to take personally
Acknowledge a criticism and move on

Acknowledgment doesn’t imply that the author agrees with the content of
the criticism

Remember: The review is not about you, the goal is to improve code

28

Cost to Fix a Defect Over Time

Rough estimate

+ The final quality frontier: testing and
Q monitoring in production
O
5 N
Q
0,
O
Q Y G G Q 2 <,
e 0 S/ % ’)),))‘ % %, & ©
% %) O Vs 7 A Cx.
) e Q & Q o
? . 7, L o, ©
S 7 % R 2B
& £ Ry ? ?
/e /’O
%%, %
% 2

Case Study of a Failed Deployment: Knight Capital

Knightmare: A DevOps
Cautionary Tale

[was speaking at a conference last year on the topics of DevOps, Configuration as Code, and
Continuous Delivery and used the following story to demonstrate the importance making
deployments fully automated and repeatable as part of a DevOps/Continuous Delivery initiative.
Since that conference I have been asked by several people to share the story through my blog.

This story is true — this really happened. This is my telling of the story based on what I have

read (I was not involved in this).

“In the week before go-live, a Knight engineer manually deployed the
new RLP code in SMARS to its eight servers. However, the engineer
made a mistake and did not copy the new code to one of the servers.
Knight did not have a second engineer review the deployment, and
neither was there an automated system to alert anyone to the
discrepancy. *

https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html

This is the story of how a company with nearly $400 million in assets went ba

minutes because of a failed deployment.

https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html

What Could Knight Capital Have Done Better?

* Use capture/replay testing instead of driving market conditions in a test
* Avoid including “test” code in production deployments

* Automate deployments

* Define and monitor risk-based KPlIs

* Create checklists for responding to incidents

Deployment Philosophy: Instagram

“Faster Is safer’”

“If stuff blows up It affects a very small
percentage of people”

Instagram cofounder and CTO Mike Krieger

https://www.fastcompany.com/3047642/do-the-simple-thing-first-the-engineering-behind-instagram

https://www.fastcompany.com/3047642/do-the-simple-thing-first-the-engineering-behind-instagram

Continuous Delivery

“Faster Is safer”: Key values of continuous delivery

Release frequently, in small batches
Maintain key performance indicators to evaluate the impact of updates
Phase roll-outs

Evaluate business impact of new features

Staging Environments

Enabling Continuous Delivery

* As software gets more complex with more dependencies, it's impossible to
simulate the whole thing when testing

* |dea: Deploy to a complete production-like environment, but don't have
everyone use it

* Examples:
* “Eat your own dogfood”

* Beta/Alpha testers

* Lower risk if a problem occurs in staging than in production

Test-Stage-Production

Continuous Delivery in Action

Developer |
Environments Beta/Dogfooding User Requests

Testing Staging Environment Production Environment

Environment

Revisions are “promoted” towards production

—

Q/A takes place in each stage (including production!)

A/B Deployments with Canaries

Mitigating risk in continuous delivery

Old Version

Web Application Database
server server server
Web Application Database
Some users
61 server server Server

New Version

Most users
(95%)

Monitor both:
But minimize impact of problems in new version

Operations Responsibility

DevOps in a slide

* Once we deploy, someone has to monitor software, make sure it’s running
OK, no bugs, etc

* Assume 3 environments:
* Test, Staging, Production

* Whose job is it?

Developers Operators
Watertall Test Staging Production
Agile Test Staging Production
DevOps | Test Staging Production Production

Release Pipelines
How quickly is my change deployed?

* Even if you are deploying every day, you still have some latency
* A new feature | develop today won't be released today

* But, a new feature | develop today can begin the release pipeline today
(Minimizes risk)

* Release Engineer: gatekeeper who decides when something Is ready to go
out, oversees the actual deployment process

Deployment Example: Facebook.com
Pre-2016

Developers working in their own branch

—-
—-
-

When feature is ready, push as 1 change to master branch

~1 week of development

master branch

3 days 4 days All changes that survived stabilizing
\4
Weekly : : ;

All changes from week
that are ready for release

release branch
v

0
n
i
i
n
i
i
n
i
i
n

v

4------
4------

duct Your change doesn't go out DAl
Proauction unless you're there that day at 3x Dal y “When in doubt back out”
that time to support it!

Deployment Example: Facebook.com

Chuck Rossi, Director Software Infrastructure & Release Engineering @ Facebook

“Our main goal was to make sure that the new
system made people’s experience better — or
at the very least, didn’t make it worse. After
almost exactly a year of planning and
development, over the course of three days in
April 2017 we enabled 100 percent of our
production web servers to run code
deployed directly from master.”

“Rapid release at massive scale” https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/

https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/

Deployment Example: Facebook.com

Post-2016: Truly continuous releases from master branch

100% production

employees

Master

| Sandeastpltegtutqmaten | | | || [[L] UL PIE L P L P LI L

https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/

https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/

Monitoring

The last step in continuous deployment: track metrics

* Hardware
* Voltages, temperatures, fan speeds, component health
* OS
* Memory usage, swap usage, disk space, CPU load
* Middleware
* Memory, thread/db connection pools, connections, response time
* Applications

* Business transactions, conversion rate, status of 3rd party components

Monitoring Services Aggregate System Status

;éiCIﬂGA

sz: Dashboard

O Problems

Host Problems
Service Problems
Service Grid

Current Downtimes

"\ Overview

‘D History

& Documentation

£ System

#¢ Configuration

& jon

Q, Search...

Q

esxio1
esxi02
esxi03
esxi04
esxi05
esxi06
esxi07
jbhpc
nagios
slurmctri-dev
squid
VM1

webapps

N Q@“ eo&
@Q&\o S & S 8 & o £
. O > <
ot &® O =~ O @ RIS 2) SV ¥ D <
OSRN RR RNE 2> ' O > 0 & o & & QO ¢ o
A NI R S R P R S SPC SPC R 2R R SR AR N &
I QIR L S S R R RN R R AR R M ¥

sssssss
TITTTIRY
o)

Monitoring Dashboards Help Gather Insights

3.40TB

3.20TB

3TB

2.80TB

00:00

1600 Ghz

1400 Ghz MJ

1200 Ghz

1000 Ghz

800 Ghz

600 Ghz

400 Ghz

200 Ghz

00:00

02:00

02:00

04:00

04:00

06:00

06:00

Overall Cluster Memory Usage

08:00

08:00

10:00

A T T

12:00

14:00

Overall Cluster CPU Usage

10:00

12:00

14:00

16:00

16:00

18:00

18:00

20:00

20:00

22:00

22:00

.)

‘N

2022-09-05 20:00:00

(U

l_\i !

2022-09-06 08:00:00

i3t Active Memory o
e ——— S
10G
_time _value _field _measurement fuzzer
2022-09-0513:52:00 10.35G active mem afiplusplus_with_knobs
8G
6G
4G
2022-09-05 20:00:00 2022-09-06 08:00:00
CPU Usage
40
30
25
20

host target
G4PlusVM136 sqlite3

Monitoring Services Take Automated Actions

;"LiCIﬂGA

« 1 2 3 4 5 6 7 ... 24 25 » # 25 <« Sortby Notification Start v A Current Ser\nce State
Q, Search... Y :
Q Search ... UP nagios
. 21
. oK Slurm Nodes on nagios Sent to jon since 2021-11 127.0.0.1
zzz Dashboard 2022-02-18 , 4 . - .
08:49:05 OK - nodes unreachable, reachable OK .
¢ Service: Slurm Nodes
© Problems OK . . . or 1m 52s
Slurm Nodes on nagios Sent to icingaadmin
2022-02-18 = o nod hable, 332 habl
- . A, - nodes unreachable, reachable
i\ Overview 08:49:05 .
Event Details
9 Hist Slurm Nodes on nagios Sent to jon
D Histor ificati
y WARNING - 7 nodes unreachable, 326 reachable Type Notification
Event Grid Start time 2022-02-18 08:42:05
Slurm Nodes on nagios Senttoicingaadmin 4 time 2022-02-18 08:42:05
Event Overview WARNING - 7 nodes unreachable, 326 reachable
Reason Normal notification
Notifications
CRITICAL . - .
Slurm Nodes on nagios Sent to icingaadmin State
Timeline R CRITICAL - 65 dg hable, 161 habl . e
08:42:05 - noaes unreacia e, reacina e Escalated NO
LT 2((:1212T:)§A‘||-8 Slurm Nodes on nagios Senttojon Contacts notified 2
08:42:05 CRITICAL - 65 nodes unreachable, 161 reachable Output

o4 System CRITICAL - 65 nodes unreachable, 161 reachable

Slurm Nodes on nagios Sent to icingaadmin

pS - -
4 Conﬂgurat'on WARNING - 12 nodes unreachable, 205 reachable

O 'On . 1
“ Slurm Nodes on nagios Sent to jon

WARNING - 12 nodes unreachable, 205 reachable

ST Slurm Nodes on nagios Sent to icingaadmin

CRITICAL - 204 nodes unreachable, 145 reachable

2022-02-18
08:34:07

Monitoring Services Take Automated Actions

Automatically detecting irregular behavior at Netflix

SPS Legend: M Experiment Ml Control

PROD:US-EAST-1 PROD:US-EAST-1
SPS Client Successes (Startplays)
ﬁ__r"—"_j _r—f—
20.0 4
|
|
|
15.0- L_j —~
]
- 10.0 4
2.0 4 —
1.04 5.0 4
0.0- I | | I I I I I 0.0- I — I I I | I |
10: 27 10: 30 10:33 10: 36 10:39 10: 42 10: 45 10: 48 10: 27 10: 30 10:33 10: 36 10:39 10: 42 10: 45 10: 48

MONITORING!

https://www.youtube.com/watch?v=qyzymLlj9ag

https://www.youtube.com/watch?v=qyzymLlj9ag

Usability Testing in Continuous Development
A/B Testing

* Ways to test new features for usability, popularity, performance without a
focus group

* Show 50% of your site visitors version A, 50% version B, collect metrics on
each, decide which is better

it em » 23%

50 % visi conversion
e

see variation A

Variation A

me > Bgm > 1%

conversion

see variation B o
Variation B

Usability Testing in Continuous Development
A/B Testing: PlanOut from Facebook (“N=10° user study”)

* Used to test advertising strategies (and Facebook functionality)

* Segment audience and define KPlIs, collect results

Experiment to:

Choose between multiple options

https://github.com/facebook/planout https://www.slideshare.net/optimizely/opti-con-2014-automated-experimentation-at-scale

https://github.com/facebook/planout
https://www.slideshare.net/optimizely/opti-con-2014-automated-experimentation-at-scale

Usability Testing in Continuous Development
A/B Testing: PlanOut from Facebook (“N=10° user study”)

QuickExperiment
e

coloys -blue - o
e b5 -

color: green
s A s
size: medium

2
=
O

O
c
(©
-

2L
o
o,
®
o1
O

.

=

0

https://github.com/facebook/planout https://www.slideshare.net/optimizely/opti-con-2014-automated-experimentation-at-scale

https://github.com/facebook/planout
https://www.slideshare.net/optimizely/opti-con-2014-automated-experimentation-at-scale

Usability Testing in Continuous Development
A/B Testing: PlanOut from Facebook (“N=10° user study”)

PlanOut

https://github.com/facebook/planout https://www.slideshare.net/optimizely/opti-con-2014-automated-experimentation-at-scale

https://github.com/facebook/planout
https://www.slideshare.net/optimizely/opti-con-2014-automated-experimentation-at-scale

Usability Testing in Continuous Development
A/B Testing: PlanOut from Facebook (“N=10° user study”)

Experiment evaluation

Exposures

% change from control to test
=D 2

-1 0 1

Confidence: » 99 % |

Metrics

https://github.com/facebook/planout https://www.slideshare.net/optimizely/opti-con-2014-automated-experimentation-at-scale

https://github.com/facebook/planout
https://www.slideshare.net/optimizely/opti-con-2014-automated-experimentation-at-scale

Beware of Metrics

McNamara Fallacy

Measure whatever can be easily measured
Disregard that which cannot be measured easily

Presume that which cannot be measured easily
IS not Important

Presume that which cannot be measured easily
does not exist

What Could Knight Capital Have Done Better?

* Use capture/replay testing instead of driving market conditions in a test
* Avoid including “test” code in production deployments

* Automate deployments

* Define and monitor risk-based KPlIs

* Create checklists for responding to incidents

Learning Objectives for this Lesson

By the end of this lesson, you should be able to...

* Describe how continuous integration helps to catch errors sooner In
the software lifecycle

* Describe the benefits of a culture of code review

* Describe strategies for performing quality-assurance on software as
and after it is delivered

